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Abstract
A theoretical model is developed to understand the basic mechanism of the
deviation of a crystal lattice from the perfect structure in nanostructured
materials. The interface tension and the stress field induced by the excess
volume in the grain boundaries are the two main reasons for lattice distortion.
Based on this model, the contribution of the lattice distortion to the thermal
expansion coefficient of nanostructured materials is analysed quantitatively. The
results show that the unusual physical properties of nanostructured materials
result not only from grain boundaries, but also from nanocrystallites.

1. Introduction

Nanostructured (ns) materials exhibit many superior physical properties different from those
of their conventional polycrystalline counterparts. These unique properties are frequently
attributed to the significant increase in grain boundary density due to the small grain size.
Over the years the research on ns materials has mainly focused on grain boundaries, whereas
for the other component, nanocrystallites, the work is still very limited. In general, it is
suggested that the crystalline component remains a perfect structure and has no significant
influence on the unusual properties. However, a series of investigations on various ns materials
synthesized by different techniques shows that the structural characteristics of nanocrystallites
may evidently deviate from those of perfect crystals [1–11]. Quantitative x-ray diffraction
(XRD) measurements for ns body-centred cubic (bcc) and face-centred cubic (fcc) metals
(Fe, Nb, Cr, Ni, Pd and Cu) show that, with a reduction in grain size, the lattice parameters
of nanocrystallites are slightly increased (mostly less than 1%) with respect to the ideal
lattice constants [1–7]. Similar phenomena have also been reported in ns trigonal and body-
centred trigonal (bct) samples (Se, Ni3P and Fe2B) [7–9]. On the other hand, the reverse
experimental results, lattice contraction, are also found by different authors [10, 11]. So
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far, many investigations on the crystal lattice structure of ns materials have yielded rather
controversial results. Although the intrinsic reason is still unclear, it is believed that such an
effect will certainly affect the physical properties of ns materials. At present, a quantitative
estimation of the effect of the crystalline component on the unusual physical properties of
ns materials is difficult, because a rational relationship describing the grain-size dependence
of crystal lattice structure is not available yet. In this paper, a model for the variation of
crystal lattice structure in ns materials will be developed and its effect on the unusual physical
properties will be discussed.

2. Crystal lattice distortion of ns materials

2.1. Effects of interface tension

For a conventional polycrystalline material, the interface compression stress arising from
interface tension is negligible. However, for a polycrystalline material with a nanometre-
scale microstructure, interface stresses can no longer be neglected because, according to
surface thermodynamic theory, the compression stress induced by interface tension is on the
order of γ /L, where γ and L denote the interface tension coefficient and the grain size,
respectively [12]. The internal pressure on crystal structure will lead to a lattice contraction. For
crystallites with cubic lattice structure, the lattice contraction (�r1), due to interface tension, is
given by [13]

�r1 = −4

3

γ ka0

L
(1)

where k is the compressibility of the material and a0 is the nearest-neighbour atom distance of
a perfect lattice.

2.2. Effect of stress field induced by excess volume in grain boundaries

Owing to the relatively disordered arrangement of atoms at grain boundaries of ns materials, the
grain boundaries inherently contain a certain amount of excess volume in the form of vacancies
and vacancy clusters. These defects will induce a stress field and make the atoms in crystallites
move from their normal lattice sites. Our previous model [14], based on a nonlinear elasticity
theory, can describe how this stress field affect the crystal lattice structure, which was used by
different authors to explain the experimental results [2, 13, 15–17]. Since there are some errors
in the previous work, a modified model is given in this paper. For simplicity, a nanometre-sized
polycrystal model is depicted schematically in figure 1. According to the elasticity theory [18],
the deviation of atoms near vacancies/vacancy clusters from their normal sites obeys a 1/x2

law, in which x is the distance from the atoms to the centre of the defects. If we consider the
stress fields from the left and the right grain boundaries, the deviation of an atom in a crystallite
from its ideal position (δ(x)) is given by δ(x) = A[1/x2 − 1/(L + ξ − x)2], where ξ is the
grain-boundary thickness and A is a correlation coefficient. The relative displacement of two
adjacent atoms in a crystallite (�r2), resulting from the stress field from the grain boundaries,
may therefore be approximated to

�r2 = δ(x) − δ(x + a0) = A

[
1

x2
− 1

(L + ξ − x)2
−

(
1

(x + a0)2

− 1

[L + ξ − (x + a0)]2

)]
. (2)
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Figure 1. A nanometre-sized polycrystal model consisting of
square-shaped crystallites with an orthogonal systems of grain
boundaries.

A may be written as [14]

A = 1

16

[
ξ 2(ξ + 2a0)

2

ξ + a0

]
( 3
√

1 + �Vg − 1) (3)

where �Vg is the excess volume of grain boundaries, which is defined as �Vg = (Vg −
V0)/V0, where Vg and V0 are the molar volumes of grain boundaries and perfect crystallites,
respectively. The mean magnitude of the �r2 over the entire crystallite (�r2) can be
calculated:

�r2 = 1

16(L − a0)

[
ξ 2(ξ + 2a0)

2

ξ + a0

]
( 3
√

1 + �Vg − 1)

∫ L+ξ/2−a0

ξ/2

[
1

x2
− 1

(L + ξ − x)2

− 1

(x + a0)2
+ 1

[L + ξ − (x + a0)]2

]
dx

= a0

2(L − a0)

[
ξ(ξ + 2a0)

ξ + a0
− ξ 2(ξ + 2a0)

2

(ξ + a0)(2L + ξ)(2L + ξ − 2a0)

]

× ( 3
√

1 + �Vg − 1). (4)

Generally, the second term in the square bracket of equation (4) is smaller than the first term,
indicating that the stress field induced by the excess volume in the grain boundaries results in
lattice expansion. It is worth mentioning that the upper limit of the integral in equation (4) is
L + ξ/2 − a0, rather than L + ξ/2. This is because, when x = L + ξ/2, equation (2) refers to
the relative displacement of two atoms in the positions of L + ξ/2 and L + ξ/2 + a0. However,
the atom at the position L + ξ/2 + a0, in fact, exists in the grain boundary.

2.3. Total crystal lattice distortion

Combining equations (1) and (4), we may obtain the total deviation of the nearest-neighbour
atom distance from the perfect distance in the crystalline component (�rc):

�rc = �r2 + �r1 = a0

2(L − a0)

[
ξ(ξ + 2a0)

ξ + a0
− ξ 2(ξ + 2a0)

2

(ξ + a0)(2L + ξ)(2L + ξ − 2a0)

]

× ( 3
√

1 + �Vg − 1) − 4

3

γ ka0

L
. (5)
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Figure 2. Changes of the excess volume of grain boundaries �Vg with grain size L in ns materials
prepared using the as-crystallized method (I) [19] and as-milled method (II) [20]. (The relationship
in I is obtained by fitting the experimental data of Lu et al [19]. The curve II corresponds to
ξ = 1 nm).

Experimental results show that �Vg is a function of the grain size, and depends on the
preparation methods. For ns materials prepared by crystallization from the amorphous state,
the �Vg increases with increasing grain size, as shown by curve I in figure 2 [19], whereas for
the ns materials prepared by ball milling, the �Vg exhibit a completely different dependence
on grain size, as shown by curve II [20]. By taking a0 = 0.25 nm, γ = 0.21 N m−1 [21],
k = 6.0 × 10−12 Pa−1 [22] and assuming ξ = 1 and 2 nm, respectively, the theoretical �rc is
calculated and the results are plotted in figure 3. Currently available experimental data are also
plotted in the same figure for comparison. It is seen that the theoretical results may well account
for the experimental observations. In addition, the present results show that the crystal lattice
structure is strongly dependent on the grain-boundary structure of ns samples. Since the grain-
boundary structure is different for samples prepared by different methods and/or conditions,
this may explain why different authors frequently observe different experimental data, even for
ns samples with the same grain size and composition.

The interface tension coefficient (γ ) in equation (5) is an important parameter in
determining the role of the compression term in �rc. This parameter depends on the interface
structure between the crystalline component and the grain-boundary component. For free
particles with very small size, the internal pressure induced by the surface is certainly important.
Lu and Zhao pointed out that, for ns materials that are not fully dense, the porosity of the
grain boundaries will lead to an increase in crystallite surface area and therefore the effects
of surface tension on the crystal lattice could become very important, which may result in
lattice contraction [7]. However, for fully dense ns materials, the nanocrystallites are embedded
in a grain-boundary ‘phase’ matrix and there is a transition between crystallites and grain
boundaries, as observed by high-resolution electron microscopy [23]. Thus, when the grain
size is extremely small, some effect of hydrostatic compression would be expected inside the
crystallites of ns materials, but this will be much weaker than the compression experienced
inside isolated nanoparticles of the same size where the effect comes from the free surface
energy, which is larger than the interface energy. For most cases, the �r2 will be dominant in
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Figure 3. Theoretical �rc/a0 versus L curves of ns materials compared with experimental data
(a and b: as-crystallized; c and d: as-milled).

�rc. Some experimental results of lattice contraction are more likely attributed to macroscopic
residual stresses in samples, as suggested by Sevillano [11]. So far, lattice contraction is
often reported in ns samples synthesized by means of the consolidation of ultrafine powders
or quenching [10, 11]. It is inevitable that there is a macroscopic residual compressive stress
in these materials. In addition, it is known that dislocations may cause an increase in the
volume of the material [24]. Experimental results show that dislocations are seldom present in
nanocrystallites, because there is a strong stress field from the grain boundaries that tends to pull
mobile dislocations out of the crystallites [23, 25]. Therefore, for nanometre-scale crystallites
the lattice dislocations might hardly have a significant influence on the lattice structure.

3. Effects of lattice distortion on physical properties

The change in lattice structure is intrinsically related to the observed physical property
variation. The thermal expansion coefficient (αL ) is taken as an example for analysis in
this paper. The work of Wagner shows that the thermal properties of ns materials may be
calculated by means of a quasi-harmonic Debye approximation (QDA), which is described in
detail in [26]. According to QDA, αL is a function of the nearest-neighbour atom distance. The
nearest-neighbour atom distance in the crystalline component (rc) is given by

rc = a0 + �rc = a0 + a0

2(L − a0)

[
ξ(ξ + 2a0)

ξ + a0
− ξ 2(ξ + 2a0)

2

(ξ + a0)(2L + ξ)(2L + ξ − 2a0)

]

× ( 3
√

1 + �Vg − 1) − 4

3

γ ka0

L
. (6)

Owing to the presence of excess volume, the nearest-neighbour atom distance in grain
boundaries (rg) is expressed as [26, 27]

rg = a0(1 + �Vg)
1/3. (7)

We consider a pure nickel system and use the following set of parameters D = 11.8 ×
10−20 J/atom, b = 1.35 × 1010 m−1, a0 = 2.5 × 10−10 m and �0 = 450 K [27]. The
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Figure 4. Variations in thermal expansion coefficients (αL,c, αL,g and αL,t ), the increase in thermal
expansion coefficient (�αL,t/αL,0) and the crystalline contribution to the increase in the thermal
expansion coefficient (xc�αL,c/�αL,t) as a function of grain size at ξ = 1 nm and T = 300 K
((A) as-crystallized; (B) as-milled).

thermal expansion coefficients in the crystalline component (αL ,c) and the grain-boundary
component (αL ,g) may be calculated using QDA, respectively. The �αL ,i (�αL ,i = αL ,i −αL ,0,
i = c and g) represent the deviation in the thermal expansion coefficient from the coarse-
grained state (rc = a0). Since ns materials can be considered as a two-component system
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with a crystalline component and a grain-boundary component, the change in the total thermal
expansion coefficient (�αL ,t) of ns materials is given by [28]

�αL ,t = xc�αL ,c + (1 − xc)�αL ,g (8)

where xc is the atomic fraction of the crystalline component. Considering the nanometre-sized
polycrystal model depicted in figure 1, xc may be expressed as

xc = L3ρc

[(L + ξ)3 − L3]ρg + L3ρc
= L3

[(L + ξ)3 − L3](r 3
c /r 3

g ) + L3
(9)

where ρg and ρc are the densities of the grain boundaries and crystallites, respectively. The
calculated results are shown in figure 4. It is seen that the increase in the total thermal expansion
coefficient relative to the coarse-grained counterpart (�αL ,t/αL ,0) depends strongly on the
preparation method. The �αL ,t/αL ,0 of as-milled ns materials is much larger than that of
as-crystallized ns materials when the grain size is extremely small, whereas for large grain size,
the reverse is the case. Such a result can be attributed to the different grain-size dependence
of the �Vg in the as-milled and as-crystallized ns states. In addition, figure 4 shows that
the contribution of the crystalline component to the increase in the total thermal expansion
coefficient (xc�αL ,c/�αL ,t) is about 10% in a large grain-size range, which does not seem
to be related obviously to the preparation method. Two reasons might be responsible for this.
(1) For a given grain size and grain-boundary thickness (approximately a given xc), the larger
excess volume in the grain boundaries will cause a larger crystal expansion, as indicated in the
last section. That is to say, if the �αL ,g increases, the �αL ,c also correspondingly increases,
and consequently the �αL ,t will become larger. This means that there is a positive correlation
between the �αL ,c and the �αL ,t in ns materials, no matter which preparation method is used,
as a result of which the value of xc�αL ,c/�αL ,t has no large difference for different methods.
(2) The increase in grain size will reduce the crystal lattice distortion (i.e. reduce �αL ,c) but
increase xc. Therefore, for large grain size, the crystalline contribution to �αL ,t may not yet be
neglected. These results show that the unusual physical properties of ns materials are attributed
not only to the grain boundaries but to crystallites as well. Similar theoretical analyses may
also extend to other physical quantities. The present works make it possible to evaluate the
effects of crystalline component on the unusual physical properties of ns materials in a large
grain-size range.

4. Conclusions

Based on the surface thermodynamic theory and the elasticity theory, a model describing the
grain-size dependence of the crystal lattice distortion of ns materials is developed. The interface
tension and the stress field induced by the excess volume in grain boundaries are the main
reasons for the deviation of the crystal lattice structure from the prefect structure. The effect of
the crystalline component on the increase in the thermal expansion coefficient of ns materials is
estimated using QDA, which indicates that, in addition to the grain boundaries, the crystalline
component also has a contribution to the unusual physical properties.

Acknowledgments

Dr W Qin would like to thank Professor Y W Du, Professor Z H Chen, Professor P Y Huang
and Professor Y H Zhuang for helpful discussions and encouragement during this work, and the
Japan Society for the Promotion of Science (JSPS) for a Postdoctoral Fellowship for Foreign
Researchers.

7



J. Phys.: Condens. Matter 19 (2007) 236217 W Qin et al

References

[1] Zhao Y H, Sheng H W and Lu K 2001 Acta Mater. 49 365
[2] Banerjee R, Sperling E A, Thompson G B, Fraser H L, Bose S and Ayyub P 2003 Appl. Phys. Lett. 82 4250
[3] Liu X D, Zhang H Y, Lu K and Hu Z Q 1994 J. Phys.: Condens. Matter 6 L497
[4] Makino A, Suzuki K, Inoue A and Masumoto T 1994 Mater. Sci. Eng. A 179/180 127
[5] Divakar R and Raghunathan V S 2003 Sādhanā 28 47
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